Evaluating the influence of lawn care practices on the headwaters of a suburban watershed

Steven T. Goldsmith, PhD Department of Geography and the Environment Villanova University

Background

- Limited knowledge of the impacts of residential fertilizer on stream quality
- 2% of the US covered in lawns = 40 million acres (Milesi et al., 2005)

Excess Nutrient Impacts

- 40 to 60% of nitrogen fertilizer applied to lawns makes its way to water resources (US EPA, 2015)
- Eutrophication: loss of Oxygen →fish kills → loss of biodiversity

Excess Sediment Impacts

- Sources
 - Runoff from impervious surfaces
 - Runoff from lawns
- Impacts
 - Increased downstream bank erosion and stream turbidity

West Mill Creek Park, Lower Merion Township, PA

Why Does Narbrook Park Matter?

- Forms a headwater tributary of the East Branch of Indian Creek (EBIC)
- A total maximum daily load (TMDL) designation for sediment has been designated for the EBIC
- The community offers and ideal location to assess streamwater impacts and showcase success stories

Source: Google Earth

Source: Lower Merion Township Storm Sewer System and Outfalls Map

Project Overview

- 1. Survey the Narbrook Park community with respect to their historical fertilizer application practices as well as attitudes towards lawn care practices
- 2. Collect soil cores from their lawns for nutrient analysis
- 3. Conduct monthly sampling of a headwater stream running through the community

Survey Results

- 19 out of 35 residences responded to the survey
- 5 respondents indicated the use of fertilizer

- Appearance of the EBIC (5.6/10)
- Health of the EBIC (4.8/10)

Soil Cores

 13 lawns and common areas were cored

 10 cores from each lawn and segment of common green

Soil Results

- 7 lawns with "elevated" nutrients
- Both sides of the common area exhibited elevated nutrients
- The hill area was not elevated

Water Sampling

- Nitrate
- Road salts
- Total suspended solids
- Discharge

Average and range of NO_3 yields for Narbrook Park and other headwater watersheds

	Average NO ₃ yields	Range of NO ₃ yields
Location	(mg/d/m ²)	(mg/d/m ²)
Narbrook Park (baseflow)	40.6	10.3 – 136
Narbrook Park (storm)	163	156 – 170
Other locales		
Hubbard Brook Forest (Hubbard Brook, NY) ¹	16.1	0.39 - 71.5
Agricultural Streams (Indiana) ²	711	4.3 - 2600
¹ Bernhardt et al. (2002) ² Bernot et al. (2006)		

Conclusion

- Limited amount of Narbrook park residents apply fertilizer
- Introduction of a riparian buffer would likely improve stream quality (Sweeney and Newbold, 2014)

Ashbridge Memorial Park Credit: LMC

Acknowledgements

- Kaitlyn McGrath, Villanova University
- Lower Merion Conservancy
- William Penn Foundation
- Residents of Narbrook Park

W